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« field| experiment design
AIMING FOR BETTER PREDICTION o /s models;
The Data Assimilation Research Testbed « emission estimates:
« S/R relationships:

New requirements for NRT data, observing
systems, and assimilation systems for chemical
applications!! 1
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e Met focused impacts (clouds, soil moisture, etc.)

e Chemical Techniques (ensemble, Var, hybrid)

— Diversity of models (and components) with DA
capabilities (e.g., Aerosol mod, radiation)

— Control targets: initial, boundary, emissions

— What existing data to assimilate (little experience
in multiple species assimilations)

e Observing systems

— Observation impact on analysis; quantify “value”
of observations

— Spatial, temporal value

Better estimates of:

- background errors (e.g., flow dependent, ...)

- observational errors,

- model errors, and

- the impact of error misspecification on analysis
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New algorithmic developments:

ability to deal with non-Gaussian uncertainty (e.qg.,
particle filters);

ability to account for model errors (e.g., weakly
constrained 4D-Var);

ability to quantify posterior errors (e.g., second order
adjoint)

ability to integrate the lessons learned so far (e.g., hybrid
variational-ensemble methods)

higher computational efficiency (e.g., reduced order
models)

Challenges wrt to scales (resolution, multiscales,...)

“coupled” met strategies (what species, techniques, impacts
both ways, etc..)

New computer science developments

Data management
Exploit accelerator architectures (e.g., GPUs)

Computational resources/efficiency
Testbeds

Building community efforts — identity, articulation



77234 FUTURE DIRECTIONS FOR IMPROVING AIR QUALITY
A PREDICTIONS -- Summary

v'Further improvements will require
reductions in key uncertainties (e.g.,
emissions, better basic understanding of
some processes).

Human Health (Asthma,
s infections, Meningitis in
— | Africa, Valley Fever in the
America’s)

v'There remain many observation needs

and they need to be better articulated
(NRT, 3-d components, geostationary)!

Agriculture (negative &
positive impacts)

Marine productivity
(negative & positive

- impacts) v'Closer integration of observations is
needed, including closer integration with
AQ and met forecasting elements.

o i e i wiw e
< e Energy (Thermal solar energy)
Improved Weather and )
Seasonal Climate prediction o ey

g

v'A growing set of tools and techniques to
assist and apply data assimilation are
available (KPP- adjoints, models for
background errors, EnKf wrappers, etc.),

2 BUT more work on chemical aspects and
‘ techniques needed.

Aviation (air disasters)

Ground Transportation
Introduction and Overview of Course

ir Quality *> Weather > Climate v Need to continue to build the
community and share experiences!
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Section 3 — Introduction and Overview of Course



AREP Chemical Weather — A New Challenge/

GAW

Opportunity For Weather And Other Services

Evolving complexity of observing systems, models, and
applications.

GLOBAL: climate change

B ONAL: * Effects of air quality and chemical exposure on

glacid rain,
e o - T i
——— a ols, greenhouse gases

Importance of Chemical Weather

* Effects of gases and aerosols on ecosystems and
agriculture

A

LOCAL: R
air pollution

health effects _

-—— = St i

WMO: GAW Urban Research Meteorology
and Environment Project -- GURME



Major Challenge: Lack of Observations

www.nap.edu/catalog.php?record_id=12540

Focus in CTM-modelling vs NWP (from @. Hov)

Parameter

Wind speed
Wind direction
Precipitation

Temperature

Clouds
Convection

TI!L,r\as I |'Imix

Specific humidity

Ground surface

Numerical Weather Prediction
High wind speeds
Not so important

Heavy rain

High and low temperatures, freezing

Cloud cover
Precipitation
Not so important
Not so important

Important for fluxes of heat,
momentum, moisture

Chemical Transport Modeling
Stagnant conditions
Essential for S-R-relationships

Length of dry periods; low
intensity rain

High temperatures — fast
reactions and large biogenic
emissions

Type, location, lifetime
BL ventilation
Important

Important for [OH]

Important for deposition, biogenic
emissions

Soil Moisture Networks
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Observations Priorities Stemming from Common
Threads

MOST NEEDED:

= Height of the planetary boundary layer

= Soil moisture and temperature profiles

= High resolution vertical profiles of humidity

= Measurements of air quality and atmospheric composition above
the surface layer

NEEDED:

= Direct and diffuse radiation

= Vertical profiles of wind

= Sub-surface temperature profiles (e.g., under pavement)
= [cing near the surface

= Vertical profiles of temperature

= Surface turbulence parameters
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Assimilation of Key Meteorological Parameters are

Needed to Improve AQ Prediction Skill

Geostationary
Satellite Observations

eInsolation
*Skin temperatures
*Cloud Properties

N

Design Period Simulations — Satellite Inputs
Retrospective — Data Assimilated for all Integration Period

Example: impact of met parameters

MQODIS

eSurface emissivity
eSurface albedo
*Skin temperatures

/

Satellite derived
properties for
photolysis rates

Chemical Model

Recreates Chemical
Atmosphere

Model BL Heights (CNTRL)

Aug. 26, 2000, 19:00-21:00 GMT averaged

Langitude

FPBL HEIGHT (m)

McNider et al., 2009

IMPACT OF
PHOTOLYSIS
ADJUSTMENT

Observed O3 vs Model Predictigns 0 ppb
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AREP Major Challenge: Need to Estimate ALL

GAW

mobile

Emissions at Appropriate Scales (p/laces new

responsibilities for NIHCs)

biomass
burning

! .
i | ‘-

anthropogenic natural

Fires detected by MODIS

Domain 1
Ax=12 km

= Anthropogenic: NEI99

Biomass Burning: MODIS hotspot
Dust: f{u™)
Yolcanic: SO, estimated
Biogenic: none at present

Links to
meteorological
parameters (T,
RH, WS,
Radiation, etc.)

Domain 2
Ax=3 km

€O emission rates
purple = low
red = high
nonlinear scale

Toluca  Mexico City Puebla

Global Distribution of Lightning Activity

R —— Goodman et al., 2007. Our Changing Planet: The View
from Space. M. King, ed.. Cambridge University Press

Mean annual global lightning flash rate (flashes km yr') derived from a combined 8
years from April 1995 to February 2003. (Data from the NASA OTD instrument on thei3
OrbView-1 satellite and the LIS instrument on the TRMM satellite.)

Impact of LNOx on 03 (Days with CMAQO3 > 75 ppbv)

40

30

20

Pct of days

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.5 10.5
Increase in 03 due fo LNOx 20040701—-20040831

Pickering et al., 2009
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/(\gf; Major Challenge: Emissions are a large source of uncertainty in AQ

Forecasting: Emissions change over scales often not captured in

current inventories, but updated inventories are needed for many

nji i
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Major Challenge: Scales

Air quality Analysis

Jun 22 “
Boundary layer flight®
Take datafrom leg dto
over the ocean ¥

ey

Boundary Conditions
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7 Major Challenge: Linking Meteorology, Air Quality
A and Human Health

WP4: A ereorological models for nrban areas

Additional measurement
— T and modeling

ST | [ | TR | requirements are needed
Neso / Cttr - st MWD modols for urban applications

pParametrisation

s
WPS: Inrerface ro Urbarn Air Pollurior: models ! -l
o X
-2
Aflixing heizhre Dowmnscaled Estanation of Grid adaptation 48+
andgedd\' model= or ABIL. e " & interpolation. B
= P e meteor olozical - slaes £ l .
diffusivicy pParameterisation parameters for UAP assimilanon o | B
estmation NWEP data s 2
CIEE
-
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Ozone During the 2003 Heat Wave

Turface vzons aSmd on S August 2003

Baklanov et al., ACP, 2007

COST 728 &
MEGAPOLI related
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AREP
"8 Environmental Prediction into the Next Decade: Weather,

Climate and the Air We Breathe (Day 2 Summary)

Weather/Climate services Climate forcing by gases
and aerosols

Long-range pollutant
transport

Environmental i
Services provide data &

information on Dust outbreaks
(Atmosphere )
Solar energy

UV radiation

Flooding/high impact
Environmental agencies precip. & connections to
ater QQ




Hindu Kush-Himalayan-Tibetan Glaciers:
Water Fountain of Asia

100-yr integrated radiative forcing for

A Major Cha"enge: year 2000 global emissions
Characterizing The
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Number of people at high CV risk globally in 2000

ﬁﬁ‘;

>175 million people at =
A: very low child and adult mortality 25%+ risk of a major CV

B: low child and adult mortality event in the next decade,
A AR by WHO subregion

E: high child, very high adult

excess deaths per year globally - - 15
no region immune!
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Services

Regional scale

Local/urban
~1-10* km

Regional
~10°km

~10* km

Boundary

Processes and Chemical
Transformations

Layer

:

Urban Features and
Characteristics

Transformations

Chemical

Integrated Air Quality — Weather — Climate Services for the
Betterment of Both

The A-TrainQ

Three dimensional observing
systems
&

eostationary Satellite Obs

| 1s-1hr | | Days - weeks |
S Connections — Impacts

— I Mitigation

| Years-decades I

— Feedbacks |
Scales

nnnnnn

Integrated Air
Quality Met.

Mo elfoP.% Intra
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systems
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GAW/AERONET/
SKYNET

Surface-based
AOD
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Ac\;ﬁ Environmental Prediction into the Next Decade: Weather,

Climate and the Air We Breathe (Day 2 Summary)

Prediction: A Challenge Common Challenges

of Scales and Integration
» More Observations (x 10?) )

- Atmosphere
- Ocean
- Terrestrial > QA/QC, Data
- Satellites Management
. - Improved Instrumentation | NRT data flows
20 5 | e O\ : + Improved Modeling to Serve Smaller Footprints
‘:: "C “ ‘\ivg " / ;;,-;‘;a’umnnesm vome. - Transport ( 107) . But larger
R # LT | Srecn ot boundany conaionee - Boundary Layer Understanding  geographic
\‘f 24 significant and improve predictions. .- w./ . , \ ,
== | ™ Furtr mprovement n preicios Squres - Assimilation, Inversion, Diagnosis «fens
. reductions in the uncertainty associated
Modified after Pierce NASA/Lang!ey .......... W ith the GCTMBCS ......... - PrediCtlon

o Enhanced Computing Capacity

ir Quality > Weather “ Climate



